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Gold-catalyzed isomerization of 2-alkynyl-1-tetralones afforded the corresponding 2-naphthylmethyl
ketones in good to high yields. For example, the reaction of 2-{4-(methoxyphenyl)methyl}-2-(phenylethy-
nyl)-3,4-dihydronaphthalen-1(2H)-one and 2-benzyl-2-(phenylethynyl)-3,4-dihydronaphthalen-1(2H)-
one in the presence of 5 mol % of (PhsP)AuCl and 5 mol % of AgOTf in THF at 50 °C gave 2-{1-(4-methoxy-
phenylmethyl)naphthalen-2-yl}-1-(4-methoxyphenyl)ethanone

and 2-(1-benzylnaphthalen-2-yl)-1-

phenylethanone in 85% and 96% yields, respectively. The present reaction proceeds through [1,2] alkyl
migration followed by oxygen transfer.

© 2008 Elsevier Ltd. All rights reserved.

The employment of domino reaction in rearrangement is espe-
cially important for the access of complex frameworks.! Several
groups, including ours, have recently reported domino reactions
proceeding through consecutive nucleophilic attack of an alkoxy
sp>-oxygen atom to a C-C triple bond, which were activated by
m-acidic transition metal complex, followed by [1,3] alkyl migra-
tion (Scheme 1).2 We envisioned that the use of carbonyl sp?-oxy-
gen nucleophile instead of ether sp>-oxygen nucleophiles would
lead us to new domino reactions incorporating carbon-oxygen
bond formation and carbon group migration (Scheme 2). It has
been revealed that the resulting oxonium-containing vinylmetal
intermediate A and A’ undergoes various transformations, such
as isomerization to vinyl carbenoids,? [3,3] rearrangement,* proton
shift involving protodemetalation,” trapping with external nucleo-
philes® ring expansion,” oxygen transfer (hetero-enyne meta-
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Scheme 1. Intramolecular nucleophilic attack of an alkoxy oxygen atom followed
by [1,3] alkyl migration catalyzed by m-acidic transition metal (M).
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Scheme 2. Intramolecular nucleophilic attack of a carbonyl oxygen atom catalyzed
by m-acidic transition metal (M).

thesis),® and cycloaddition.® Recently, Kirsch et al. reported gold-
and platinum-catalyzed domino reactions consisting of hetero-
cyclization and [1,2] alkyl migration (Eq. 1).1%!! In their reaction,
the oxygen lone pair of the hydroxy group provides the critical
driving force in the reaction allowing this kind of acyloin rear-
rangements to take place under mild conditions. Herein, we report
that the gold-catalyzed reaction of 2-alkynyl-1-tetralones 1 pro-
ceeds through consecutive [1,2] alkyl migration-oxygen transfer
producing 1,2-disubstituted naphthalenes 2 in good to excellent
yields (Eq. 2).'?
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Table 1
Catalytic activity for isomerization of 1a

Ph Ar

(0]
SOR

/ conditions
Ar

50 °C
MeO MeO
la (Ar = p-anisyl) 2a (Ar = p-anisyl)

Entry Catalyst (mol %) Solvent Yield/%*

1 (PhsP)AuCl (5) + AgOTf (5) THF 89

2P (Ph3P)AuCl (5) + AgOTf (5) THF 73

3 (tBu,PhP)AuCl (5) + AgOTf (5) THF 63

4 {(p-Anisyl)Ph,P}AuCl (5) + AgOTf (5) THF 57

5 {(p-F3CCeH4)Ph,P}AUCI (5) + AgOTf (5) THF 69

6 (PhsP)AuCI (5) + AgBF, (5) THF 57

7 (PhsP)AuCl (5) + AgSbFg (5) THF 16°

8 (PhsP)AuCI (5) + AgNTf, (5) THF 114

9 (Ph3P)AuCl (5) + AgOTf (5) Toluene 80
10° (PhsP)AuCl (5) + AgOTS (5) CH,Cl, 18¢
11° (PhsP)AuCl (5) + AgOTf (5) MeCN 5
i72° (PhsP)AuCl (5) + AgOTf (5) MeNO, 5¢
13 (PhsP)AuCI (10) Toluene N
14° AgOTf (10) Toluene 43
15 TfOH (20) Toluene e

3 TH NMR yield using dibromomethane as an internal standard.
> At 35°C.

€ 42% of 3 was obtained.

9 53% of 3 was obtained.

€ 48% of 1a was recovered.

f 16% of 1a was recovered.

& 57% of 1a was recovered.

" Nr: no reaction.

I Decomposition of 1a was observed.

First, we optimized the reaction conditions using 1a as the sub-
strate. The results are summarized in Table 1. The reaction of 1a in
the presence of 5 mol % of (PhsP)AuCl and 5 mol % of AgOTf in THF
at 50 °C gave 2a in 89% yield (entry 1).!> The reaction at 35 °C affor-
ded 2a in 73% yield (entry 2). The use of other gold-phosphine
complexes, such as (tBu,PhP)AuCl, {(p-anisyl)Ph,P}AuCl,'* and
{(p-F3CCgH4)Ph,P}AuCI' instead of (PhsP)AuCl, afforded 2a in low-
er yields (entries 3-5). The present reaction was significantly
affected by the counteranion of the silver salt; when silver salts
having weakly coordinating anions, such as bis(trifluorosulfo-
nyl)amide and hexafluoroantimonate, were used, the yield of 2a
decreased, forming a large amount of byproduct 3 (entries 7 and
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Table 2
Gold-catalyzed consecutive [1,2] alkyl migration-oxygen transfer reaction of 1°

Ph 5 mol % (PhzP)AuCl
5 mol % AgOTf
THF, 50 °C

Entry Time Y1e1d/7b

1 1b benzyl 20 min 2b 96

2 1c (p-Tolyl)CH, 20 min 2c Quant

3 1d (p-Anisyl)CH, 20 min 2d 85

4 1e {2,5-(Me0),CsH3}CH, 21h 2e 59

5 1f Me 12h - No reaction
6 1g Et 1h 2g 12

7¢ 1h i-Pr 145h 2h 21

¢ The reaction of 1 (0.2 mmol) was carried out in the presence of 5mol% of
(Ph3P)AuCl and 5 mol % of AgOTf in THF (0.4 mL) at 50 °C.

b Isolated yield.

¢ The reaction of 1h was carried out in the presence of 5 mol % of AuCl at 70 °C.

8).!°> The reaction of 1a using toluene instead of THF gave 2a in
80% yield, whereas CH,Cl,, acetonitrile, and nitromethane were
less effective (entries 9-12). The reaction in the absence of silver
salts did not proceed at all (entry 13). The reaction using AgOTf
as catalyst afforded 2a in a lower yield, although TfOH led to
decomposition of the starting material 1a (entries 14 and 15).
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We applied the optimal conditions (Table 1, entry 1) to various
substrates (Eq. 2). The results are summarized in Table 2. The reac-
tion of 1b and 1c, which had a benzyl and p-tolylmethyl group,
respectively, as a migrating group, completed within 20 min, giving
2b and 2c in good to excellent yields (entries 1 and 2). The reaction
of 1d bearing a (p-methoxyphenyl)methyl group at R1 proceeded
smoothly, while that of 1e having a (2,4-dimethoxyphenyl)methyl
group took 21 h due to steric hindrance of the migration group
(R1) (entries 3 and 4). As expected, methyl and ethyl groups proved
to be poor migrators; formation of gold mirror was observed
(entries 5 and 6). The substrate 1h having an isopropyl group at
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Scheme 3. Plausible mechanism.
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R1 was instead converted to 2h by the use of AuCl as catalyst and by
elevating the reaction temperature to 70 °C, though the chemical
yield was low (entry 7).

A plausible mechanism of the reaction of 1 is illustrated in
Scheme 3. The cationic gold catalyst first coordinates to the alkynyl
moiety of 1. The then triggered intramolecular nucleophilic attack
of the carbonyl group to the electron-deficient triple bond leads to
the formation of cyclic intermediate 6. [1,2] Alkyl migration would
be followed by C-O bond cleavage, forming the gold carbenoid
intermediate 7.'%'7 Finally, hydrogen transfer leads to elimination
of the gold catalyst, and aromatization of 8 would give 2. Forma-
tion of 3 as a byproduct clearly suggests intermediacy of the furyl-
gold species 5.18

In conclusion, we are now in the position to synthesize 2-naph-
thylmethyl aryl ketones by using cationic gold catalysts. This
present reaction, which proceeds via carbon functional group
migration on an oxonium ion, is a useful methodology to synthe-
size complex compounds in an efficient and atom-economic
manner. Further investigations including mechanistic studies are
currently on going in our laboratory.
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